
Udder	Destruc+on:	Breaking	Things	and	Other	Explora+ons	in	Blender	

Kiwi	Sheldon	and	Leo	McElroy	

CS500	

12/17/17	

Abstract	

The	aim	of	our	study	was	to	create	a	tool	to	animate	destruc@on	sequences	in	Blender	and	to	use	said	

tool	to	create	such	a	destruc@on	sequence	for	the	short	film	Estrellita.	We	modified	an	exis@ng	fracture	

tool	to	make	it	suitable	for	anima@on	uses	but	encountered	limita@ons	when	applying	the	tool	to	the	

intricate	yet	geometrically	flawed	mesh	used	in	the	shot	of	interest.	Ul@mately,	we	used	a	forked	version	

of	Blender	to	create	the	finished	destruc@on	shot,	one	that	composes	roughly	fourteen	seconds	of	the	

film.	We	also	created	a	collec@on	of	tools	and	scripts	to	assist	with	the	various	needs	of	other	anima@on	

studio	members.	By	the	semester’s	end,	we	successfully	adapted	an	accessible	fracture	tool	to	anima@on	

purposes;	wrote	several	custom	tools	that	will	be	useful	to	the	Middlebury	anima@on	studio;	learned	to	

navigate	the	inner-workings	of	Blender;	and	gained	valuable	experience	contribu@ng	to	two	large	

projects,	Blender	and	Estrellita.		

Semester	Objec+ves	

We	began	the	semester	with	ambi@ous,	yet	flexible,	goals	of	what	we	hoped	to	accomplish	before	

December.	

● First,	we	wanted	to	make	a	meaningful	contribu@on	to	the	film	Estrellita.	We	expected	this	to	

come	in	the	form	of	one	to	three	destruc@on	anima@ons	that	take	place	during	the	climax	of	the	

film.		



● We	wanted	to	create	tools	that	might	be	useful	to	other	animators,	both	in	the	larger	blender	

community	and	in	the	Middlebury	anima@on	studio.	More	specifically,	we	were	interested	in	

crea@ng	tools	which	facilitate	destruc@on	anima@ons.	

● We	wanted	to	learn	about	the	inner-workings	of	the	Blender	soVware:	the	data	structures	that	

store	mesh	and	anima@on	data,	tools	that	edit	meshes,	algorithms	that	generate	apparent	

randomness,	and	how	scripts	could	be	effec@vely	employed	in	anima@on	workflows.	

● We	wanted	to	gain	experience	working	on	projects	whose	scales	extended	beyond	our	own	

contribu@ons	-	in	this	case,	both	the	soVware	and	the	film.	

As	is	to	be	expected	with	open-ended	independent	projects,	we	refined	our	goals	over	the	course	of	the	

semester	as	we	became	increasingly	aware	of	the	challenges	we	faced	and	how	we	could	feasibly	

overcome	them	in	the	@mespan	available	to	us.	

A	Note	on	the	Shot	

As	a	whole,	the	film	offers	a	child’s	perspec@ve	on	deporta@on	in	the	United	States.	When	her	father	is	

taken	in	by	U.S.	Immigra@on	and	Customs	Enforcement,	Estrellita’s	fantas@cal	imaginary	world	comes	

crashing	down	around	her	as	the	crushing	reality	sets	in.	In	the	film,	this	transi@on	is	conveyed	by	the	

collapse	of	three	structures	that	Estrellita	had	built	up	in	her	imagina@on:	the	barn	where	her	father	

worked	(the	film	is	set	on	a	dairy	farm	in	Vermont),	the	trailer	where	they	lived,	and	the	cow-shaped	

mountain	in	the	distance.		

We	spent	almost	the	en@re	semester	focusing	on	this	last	shot,	the	collapse	of	the	cow-shaped	

mountain.	The	object	itself,	“cow_mountain,”	was	built	over	the	summer	using	a	clay	model	and	a	3D	

scanner.	This	procedure	resulted	in	an	unusually	complex	mesh	with	prominent	non-manifold	geometry,	

a	fact	that	became	a	serious	issue	as	the	semester	progressed.	

Pre-exis+ng	Destruc+on	Tools	



We	began	our	destruc@ve	efforts	by	inves@ga@ng	exis@ng	fracture	tools.	Such	a	tool	takes	a	single	mesh	

object	as	input	and	outputs	a	set	of	shard	meshes,	a	“broken”	version	of	the	original	mesh	(see	Fig.	1).	

With	such	a	tool	we	hoped	to	fracture	the	cow_mountain	object,	genera@ng	shards	that	would	fall	apart	

or	explode	outward.	

						 	

The	default	version	of	Blender	has	no	fracture	tool	of	its	own,	but	as	Blender	is	an	open-source	project,	

two	working	modifica@ons	offer	fracture	capabili@es.	The	first	is	an	add-on	available	from	within	the	

default	blender.	The	second	is	scorpion81’s	Fracture	Modifier	Build,	a	forked	version	of	the	en@re	

soVware	package.	AVer	an	examina@on	of	the	capaci@es	of	each,	we	decided	to	begin	working	in-depth	

with	the	add-on.	This	decision	was	made	primarily	on	the	basis	that	using	the	Fracture	Add-On	allowed	

our	work	to	be	more	easily	integrated	into	exis@ng	project	files.	Use	of	the	Fracture	Modifier	requires	the	

animator	to	commit	to	an	integrated	Fracture	Modifier	workflow	which	involves	mesh	crea@on,	physics	

simula@ons,	and	keyframing.	The	Fracture	Add-On	code	was	also	far	more	accessible	because	the	

Modifier	code	included	numerous	tweaks	and	op@miza@ons	to	core	Blender	files	which	obfuscated	the	

salient	pieces	of	code	relevant	to	fracturing	objects.	

Working	with	the	Add-On	

Figure	1.	Shards.	The	shards	
resul@ng	from	a	cube	fractured	
using	the	cell	fracture	add-on.	
With	these	par@cular	seengs,	
eight	shards	are	produced



The	bulk	of	the	add-on	was	wrifen	several	years	ago	by	pildanovak.	Though	there	exist	some	online	

tutorials	concerning	its	basic	use,	the	support	community	is	small	compared	to	that	of	other	frequently	

used	Blender	add-ons.	The	add-on	is	directly	available	within	default	Blender	and	can	be	enabled	in	

‘User	Preferences.’	Because	of	the	widespread	availability	of	the	add-on	to	other	members	of	the	

Blender	community,	and	because	of	the	apparent	accessibility	of	its	source	code,	we	decided	it	would	be	

a	suitable	base	from	which	to	develop	our	project.	

The	add-on	works	by	crea@ng	a	bounding	box	-	a	cube	that	encompasses	the	en@re	mesh	-	and	then	

fracturing	this	bounding	box	in	one	of	several	ways,	each	based	on	a	different	set	of	points.	The	resul@ng	

fractured	bounding	box	is	then	combined	with	the	original	mesh	using	Boolean	modifiers.	This	

construc@ve	solid	geometry	creates	a	set	of	shards,	the	output	of	the	add-on.	

The	bounding	box	fracture	relies	first	on	a	set	of	points	in	3D	space.	In	the	cell	fracture	add-on,	these	

points	are	chosen	by	the	user.	The	add-on	offers	four	preset	op@ons	for	deriving	these	points	from	the	

geometry	of	exis@ng	objects	(see	fig.	2)	and	a	fiVh	op@on	to	create	a	custom	set	of	points	using	the	

grease	pencil	tool.	From	these	points	an	algorithm	generates	the	new	meshes	of	the	fractured	bounding	

box.	To	produce	these	intermediate	meshes,	most	programs	make	use	of	the	Voronoi	tessella@on	

method	through	the	Voro++	library,	a	library	wrifen	in	C++	and	tailored	to	three	dimensional	geometry.	

Unusally,	the	Cell	Fracture	Add-on	implemented	its	own	Voronoi	method.	

	 	

	

Figure	2.	GUI	of	Cell	Fracture	Add-on.	The	bar	
at	the	top	(own	verts,	child	verts,	own	
par@cles,	child	par@cles,	grease	pencil)	offers	
five	op@ons	of	point	sets	on	which	to	perform	
a	Voronoi	tessella@on.



The	first	and	most	obvious	issue	to	address	in	the	Cell	Fracture	Add-On	was	a	flaw	in	its	applica@on	to	

animated	objects:	resul@ng	shards	did	not	conserve	the	momentum	of	the	original	object.		

A	Note	on	Anima/on	in	Blender:	Blender	simulates	all	anima@on	using	keyframes.	A	keyframe	

belongs	to	an	object	and	consists	of	two	pieces	of	data:	a	par@cular	frame	and	a	par@cular	

characteris@c	of	an	object	(its	loca@on,	rota@on,	scale,	etc.).	A	loca@on	keyframe	on	frame	10	

means	that	object	will	be	in	that	par@cular	loca@on	at	that	frame.	Anima@on	is	the	result	of	

having	mul@ple	keyframes	governing	the	same	characteris@c.	Blender	will	interpolate	and	

extrapolate	data	from	two	or	more	keyframes.	The	kinema@cs	of	an	object	is	con@ngent	on	that	

object’s	anima@on	data.	

An	object	with	anima@on	data,	when	fractured	using	the	cell	fracture	add-on,	passed	along	none	of	that	

anima@on	data	to	the	resul@ng	shards.	For	our	purposes	-	imita@ng	objects	which	shafer	on	impact	with	

the	ground	-		this	unexpected	feature	of	the	add-on	resulted	in	a	quite	unnatural	appearance;	falling	

objects	seemed	to	lose	all	their	momentum	on	the	keyframe	where	we	performed	the	fracture.	A	

significant	por@on	of	our	@me	this	semester	was	devoted	to	addressing	this	issue.		

To	solve	this	issue,	we	first	implemented	a	workaround	within	Blender’s	user	interface.	Once	we	had	our	

methods	sefled,	we	implemented	the	workflow	in	pieces	using	scripts,	then	integrated	this	code	into	

the	add-on.	Our	workflow	essen@ally	consisted	of	copying	anima@on	data	from	the	original	object	to	the	

shards.	We	achieved	this	by	paren@ng	the	shards	to	the	original	mesh	(a	constraint	which	@es	the	

loca@on	of	one	object	to	that	of	another),	keyframing	the	shards	in	two	different	frames	immediately	

before	the	intended	fracture,	removing	the	parent	constraint,	and	then	extrapola@ng	mo@on	from	

keyframe	data.	

More	formally,	our	solu@on	can	be	broken	down	into	the	following	steps:	

1. Add	resul@ng	shards	to	the	rigid	body	group.	This	means	Blender	will	automa@cally	cache	

anima@on	data	generated	by	a	built-in	physics	engine.	

2. Parent	shards	to	original	object,	a	constraint	which	applies	transforma@ons	of	the	parent	object	

onto	its	children.	

3. Set	frame	to	moment	of	fracture.	This	changes	the	frame	of	the	shot	which	moves	shards	to	

appropriate	posi@on.	



4. Remove	parent	constraint.	

5. Set	keyframes	on	shards	with	linear	interpola@on	anima@on.	

6. Reset	parent	constraint.	

7. Move	backward	some	frames	(we	choose	ten).	

8. Remove	parent.	

9. Set	keyframe.	

10. Set	extrapola@on	for	all	keyframes.	

11. Swap	original	object	for	fractured	shards	by	hiding	original	object	and	revealing	shards	at	the	

moment	of	fracture.	

12. Clean-up	-	deselect	and	deac@vate	all	objects.	

We	found	our	modifica@ons	were	successful	in	simula@ng	the	conserva@on	of	momentum	and	allowed	

the	fracture	to	be	applied	without	genera@ng	unnatural	physics.	However,	itera@ve	applica@on	of	the	

add-on	as	well	as	its	use	on	more	complex	meshes	caused	other	issues.	

Encountering	and	Inves+ga+ng	Limits	

As	we	began	to	apply	the	cell	fracture	recursively	and	to	more	complex	meshes,	we	began	to	run	into	

problems	with	the	appearance	of	the	shards.	Applying	the	add-on	to	more	complex	meshes	would	

frequently	result	in	visually	flawed	shards.	Recursive	use	of	the	add-on	with	even	the	simplest	meshes	

would	also	produce	these	flawed	shards	(see	Fig.	3).		



	

It	was	puzzling	that	high-quality,	manifold	meshes	subjected	to	the	add-on	would	output	low-quality,	

non-manifold	meshes	that	were	unsuitable	for	further	applica@on	of	the	add-on.	(In	this	context	a	

manifold	mesh	is	essen@ally	a	water@ght	mesh	without	overlapping	edges	and	faces.)	We	spent	some	

@me	inves@ga@ng	the	root	cause	of	the	issue	with	the	intent	of	fixing	the	problem	within	the	add-on’s	

code.	The	issue	lay	within	the	add-on’s	use	of	Boolean	modifiers.	These	modifiers	are	built	into	Blender	

and	make	use	of	a	library	for	construc@ve	solid	geometry	(CSG)	called	Carve.	Carve	is	improper	for	use	

on	meshes	with	non-manifold	surfaces	or	high-connec@vity	points	(verices	at	the	confluence	of	many	

intersec@ng	edges).	These	two	requirements	contributed	to	our	issues	with	itera@ve	applica@on,	but	the	

primary	problem	we	observed	arose	from	the	applica@on	of	Boolean	modifiers	on	objects	with	

overlapping	edges	or	edges	that	were	too	close	together.	Because	the	Boolean	modifiers	are	a	form	of	

CSG,	their	applica@on	to	overlapping	faces	cannot	be	expected	to	generate	solid	objects	(water@ght	

manifold	surfaces).	Realizing	that	the	issue	we	were	facing	was	caused	by	core	features	of	Blender	we	

also	discovered	the	mo@va@on	for	forking	Blender	to	create	an	improved	fracture	tool.	This	lead	us	to	

decide	the	best	approach	to	producing	our	shot	was	to	use	the	Fracture	Modifier	forked	version	of	

Blender	we	had	discovered	and	studied	earlier.	

In	the	course	of	our	inves@ga@on	into	the	failures	of	the	cell	fracture	add-on	we	learned	about	how	

mesh	data	is	represented	in	Blender	as	well	as	alterna@ve	topological	data	structures.	As	of	the	2.63	

release,	Blender	represents	mesh	data	in	a	structure	called	bmesh.	A	bmesh	structure	is	composed	of	

four	parts:	ver@ces,	edges,	faces,	and	loops.	Ver@ces,	edges,	and	faces	store	data	defining	their	loca@ons	

Figure	3.	Itera+ve	Fracture.	
Itera@ve	use	of	the	Cell	
Fracture	Add-on	applied	to	a	
cube.	The	first	fracture	
produces	eight	visually	
correct	but	geometrically	
flawed	(non-manifold)	shard	
meshes.	The	second	fracture,	
applied	here	to	one	such	
flawed	mesh,	produces	
shards	that	are	both	visually	
and	geometrically	flawed.



as	well	as	links	to	cycles,	connec@ons	between	topological	en@@es	that	enable	the	structure	to	maintain	

persistent	adjacency	informa@on.		

Working	with	the	Fracture	Modifier	Build	

Accep@ng	that	we	would	use	the	Fracture	Modifier	also	entailed	commieng	to	anima@ng	the	elements	

of	the	shot	that	made	use	of	the	Modifier.	This	is	because	we	had	to	output	a	file	which	could	be	opened	

and	edited	in	“out	of	the	box”	Blender.	This	commitment	was	reaffirmed	when	one	of	our	studio	peers	

afempted	to	edited	some	shots	in	the	forked	version	and	found	he	was	unable	to	do	so	without	the	

program	crashing.		

When	we	began	working	in	the	cow_mountain.blend	file,	we	began	to	spend	@me	considering	the	

design	of	the	shot.	Would	the	whole	mountain	explode	upward?	Would	ominous	cracks	grow	from	the	

base?	Eventually	we	sefled	on	a	concept	consis@ng	mostly	of	the	collapse	of	the	cow-shaped	por@on	of	

the	peak.		

The	process	of	collapse	began	with	a	separa@on	of	the	cow	head	from	the	rest	of	the	mountain.	This	

separa@on	was	achieved	with	the	use	of	a	growing	crack.	Though	the	slow	cracking	sequence	did	not	

make	it	into	the	final	cut	of	the	shot	(the	shot	became	too	long),	it	featured	prominently	in	earlier	

versions	and	is	s@ll	there	for	those	quick	enough	to	spot	it.	The	cracking	effect	was	created	with	the	use	

of	nested	Boolean	modifiers.	The	visible	mountain	object	is	the	result	of	cow_mountain	mesh	minus	a	

crack	mesh	object	that	we	created.	From	this	crack	mesh,	in	turn,	we	subtracted	a	cube.	As	the	cube	

moves,	the	crack	mesh	grows,	transla@ng	into	a	nega@ve	space	in	the	cow_mountain	mesh.	

From	here	the	head	falls	downward,	a	mo@on	that	is	partly	manually	animated	and	partly	directed	by	

Blender’s	rigid	body	physics	simula@on.	The	cow	head	splits	in	two,	a	manual	anima@on	achieved	with	

Boolean	modifiers.	As	these	two	meshes	reach	the	ground	(that	is,	a	carefully	placed	plane	object	-	there	

is	no	real	ground	in	the	spot	where	they	fall)	the	fracture	modifier	takes	over.	At	the	moment	of	impact,	

the	two	head	objects	are	swapped	out	for	two	sets	of	shards	generated	by	the	fracture	modifier.	These	

shards	interact	with	each	other	and	with	the	ground	plane	object	as	rigid	bodies.	To	stabilize	the	shot,	

we	converted	the	physics	simula@on	data	to	keyframed	object	data.	This	also	makes	the	shot	easy	to	



integrate	with	the	rest	of	the	movie,	which	is	made	in	“out	of	the	box”	Blender	as	opposed	to	the	forked	

version.	

Though	the	fractured	head	was	aesthe@cally	pleasing,	the	shot	s@ll	looked	somewhat	unnatural;	the	

objects	seemed	small	and	ceramic	rather	than	large	and	mountainous.	To	counter	this	appearance,	we	

rigged	several	par@cle	systems	to	simulate	the	snow,	dust,	and	medium-sized	debris	of	the	collapse.	

These	‘smoke	and	mirrors’	par@cle	systems	add	a	great	deal	of	realism	to	the	shot.	

Script	wri+ng	for	other	people	

Throughout	the	semester	studio	members	encountered	a	variety	of	issues	which	could	be	addressed	by	

wri@ng	Blender	scripts.	We	wrote	three	such	scripts.		

When	crea@ng	a	film	in	Blender	ar@sts	oVen	create	two	versions	of	models	-	a	low	resolu@on	for	

anima@ng	and	a	high	resolu@on	version	for	rendering.	The	high	resolu@on	model	will	appear	in	the	film.	

Working	with	a	high	resolu@on	model	during	anima@on	would	create	lag	which	interferes	with	an	

animator's	sense	of	@ming	and	their	ability	to	animate	effec@vely.	This	problem	is	ameliorated	by	

introducing	a	low	resolu@on	model.	This	introduc@on	however	creates	a	new	issue	-	the	necessity	to	

manually	swap	models	at	render	@me.	We	wrote	a	script	which	automated	the	process	so	when	a	shot	

was	render	all	models	were	automa@cally	swapped	with	their	high	resolu@on	version	and	then	

automa@cally	swapped	back	with	their	low	resolu@on	version	aVer	rendering.	The	script	was	designed	in	

such	a	way	that	a	user	could	easily	specify	which	models	have	mul@ple	versions	which	should	be	

swapped	at	render	@me.		

	

Figure	4.	Resolu+on	Swapping.	
LeV:	low-res	version	of	
Estrellita’s	hair;		right:	high-res	
version. 



The	next	script	we	wrote	was	to	simplify	the	modelling	process.	Another	ar@st	in	the	studio	was	working	

with	models	that	had	a	number	of	laece	modifiers	applied	to	different	components	of	the	models.	This	

type	of	modifier	deforms	meshes.	While	edi@ng	the	models	she	had	to	filter-search	for	these	modifiers	

and	then	manually	toggle	the	modifiers	on/off	so	she	could	work	on	the	original	meshes.	She	asked	us	to	

develop	a	tool	which	would	automate	this	process.	We	wrote	a	script	for	this	which	also	generated	a	

bufon	that	could	be	used	to	toggle	all	laece	modifiers	on	or	off.	

	

The	last	script	we	wrote	was	to	handle	a	cycle	dependency	issue	which	caused	animated	milk	

constrained	to	a	path	to	shoot	out	of	the	tube	it	was	travelling	through.	This	issue	was	easily	resolved	by	

automa@cally	shiVing	frames	forward	and	back	to	the	start	shot	on	render.	

	

Learnings	and	reflec+on	

Figure	5.	LaVce	Visibility	
Toggle.	LeV:	Chevy	Tahoe	
model	with	laece	modifier	
visible;		right:	without. 

Figure	6.	Path	Dependency	
Cycle	Issues.	Single	frame	of	
the	shot	with	milk	ejec@on	
fixed.	 



To	review,	our	goals	for	the	semester	were	to:	

● Make	a	meaningful	contribu@on	to	the	film	Estrellita.	

● Create	tools	that	might	be	useful	to	other	animators.	

● Learn	about	the	inner-workings	of	the	Blender	soVware.	

● Gain	experience	working	on	projects	whose	scales	extended	beyond	our	own	contribu@ons.	

We	felt	some	measure	of	success	in	achieving	each	of	these	goals.		

We	completed	the	anima@on	of	a	destruc@on	shot	which	is	ready	for	ligh@ng	and	material	refinement,	

and	will	set	the	mood	of	the	film’s	ending.		

We	created	tools	which	helped	other	animators	in	the	studio	achieve	their	goals.	This	success	deviated	

from	how	we	perceived	it	would	be.	We	expected	the	studio	to	use	our	destruc@on	tool,	but	ul@mately	it	

was	our	custom	tools	which	were	used.	Developing	these	custom	tools	gave	us	the	valuable	opportunity	

to	think	about	the	rela@onship	between	technical	and	intui@ve	interfaces	and	when	it	is	appropriate	to	

introduce	automa@on	into	a	workflow.	The	dis@nc@on	between	technical	and	intui@ve	is	well	

represented	by	the	scrip@ng	and	3D	View	environments	in	Blender.	The	scrip@ng	environment	requires	a	

user	to	write	programs	in	python	and	the	3D	View	environment	is	a	WYSIWYG	(What	You	See	Is	What	

You	Get)	interface.	Although	I	would	not	claim	that	either	is	intui@ve,	the	3D	View	is	certainly	more	so.	

What	was	interes@ng	about	developing	our	tools	was	that	they	crossed	the	threshold	between	working	

in	these	two	environments.	In	Blender	there	are	many	workflows	which	lend	themselves	more	to	one	

environment	than	the	other.	Keyframing	large	numbers	of	shards	was	monotonous	and	called	for	

automa@on	but	@ming	pivotal	cracks	required	feeling	the	movement	of	the	shot	and	anima@ng	by	hand.	

Building	tools	which	bridge	these	two	environments	allowed	us	to	empower	users	who	may	be	more	

comfortable	in	one	environment	with	the	capabili@es	of	the	other.	Through	this	work	we	found	a	

reflec@on	within	Blender	of	the	cross-disciplinary	work	we	were	doing	in	the	studio	and	the	value	of	

integra@ng	computer	science	with	art.	The	opportunity	to	augment	each	with	the	advantages	of	the	

other.	Although	we	did	not	end	up	using	the	our	modified	destruc@on	tool	for	the	Estrellita	film	we	s@ll	

produced	a	distributable	modified	Cell	Fracture	Add-On	which	conserves	momentum.	



We	learned	how	to	script	in	Blender,	which	entailed	learning	how	Blender	works	-	specifically	the	way	

different	object	proper@es	are	stored	with	meshes	in	dic@onary	data	structures	and	how	afribute	

accessibility	changes	with	context.	We	also	learned	about	bmesh	object	representa@on	and	how	

Boolean	modifiers	are	implemented	using	the	carve	library.		

Lastly	we	gained	a	lot	of	experience	working	on	two	very	large	scale	projects:	Blender	itself	and	the	

Estrellita	film.	Working	on	projects	of	such	scale	entailed	many	challenges	which	are	not	typically	

encountered	in	regular	coursework.	One	such	challenge	was	the	necessity	to	“feel	around	in	the	dark”	or	

to	pursue	dead	ends.	This	process	allowed	us	to	discover	the	context	into	which	our	work	fit	and	to	

cri@cally	evaluate	what	contribu@ons	we	could	feasibly	make	in	the	@me	available	to	us.	Some	dead	ends	

could	have	been	avoided	by	performing	more	research	but	a	majority	of	the	@me	the	only	way	to	truly	

understand	the	problems	was	to	encounter	them	for	ourselves.	Working	on	a	large	open-source	project	

also	provided	us	with	the	opportunity	to	read	and	study	thousands	of	lines	of	code,	wrifen	by	others.	

Overall,	we	both	considered	the	experience	of	working	in	the	anima@on	studio	highly	valuable,	

enjoyable,	and	uniquely	different	yet	complementary	to	the	our	other	coursework.


